पिछले कुछ वर्षों में रसायन शास्त्र के नोबेल पुरस्कार कई बार ऐसी खोजों/आविष्कारों के लिए दिए गए हैं जिनका सम्बंध जीव विज्ञान से है। जैसे वर्ष 2018 का नोबेल एंज़ाइमों के निर्देशित विकास, 2017 का नोबेल जैविक अणुओं की संरचना पता करने के लिए इलेक्ट्रॉन सूक्ष्मदर्शी की तकनीक में परिष्कार तथा 2014 का फ्लोरेसेंस सूक्ष्मदर्शी तकनीक के विकास के लिए, 2015 का डीएनए की मरम्मत की क्रियाविधि की खोज के लिए दिए गए थे। इसी सिलसिले में इस वर्ष का रसायन नोबेल जीनोम संपादन (सरल शब्दों में काट-छांट) की नई तकनीक के विकास के लिए दिया गया। दिलचस्प बात है कि दोनों विजेता महिलाएं हैं - एमैनुएल शारपेंटिए और जेनिफर डाउडना।
तो इस वर्ष के नोबेल की विषयवस्तु पर आते हैं। सबसे पहली बात तो यह बताना ज़रूरी है कि उक्त दोनों शोधकर्ता जेनेटिक कैंची की खोज में नहीं निकले थे बल्कि वे तो बैक्टीरिया की इम्यून सिस्टम को बेहतर समझना चाहते थे। इस मायने में कहा जा सकता है कि उनकी खोज आकस्मिक संयोग का परिणाम थी, लेकिन साथ ही यह भी कहना होगा कि संयोग का फलित होना शोधकर्ता की दिमागी तैयारी के बगैर संभव नहीं है। अन्यथा सेब तो रोज़ गिरते रहते हैं।
दरअसल जेनेटिक कैंची की खोज करीब 8 वर्ष पहले हुई थी और तब से यह जीव वैज्ञानिकों का महत्वपूर्ण औज़ार बन चुकी है। इसके उपयोग के कई उदाहरण हैं। उनकी बात बाद में करेंगे।
शारपेंटिए वर्ष 2002 से स्ट्रेप्टोकॉकस प्योजेंस का अध्ययन करती रही हैं। यह बैक्टीरिया मनुष्यों में कई रोग पैदा करता है: टॉन्सिलाइटिस और इम्पेटिगो जैसी उपचार-योग्य बीमारियों से लेकर सेप्सिस व शरीर के मुलायम ऊतकों का नाश जैसी जानलेवा स्थितियां। शारपेंटिए समझना चाहती थीं कि रोगजनक बैक्टीरिया इतने संक्रामक क्यों होते हैं और वे एंटीबायोटिक दवाइयों के खिलाफ प्रतिरोध कैसे हासिल कर लेते हैं।
शारपेंटिए ने सबसे पहले तो यह देखा कि इस बैक्टीरिया में जीन्स का नियमन कैसे होता है यानी कब कौन-सा जीन चालू या बंद होगा, इसका निर्णय कैसे होता है।
इसी दौरान जेनिफर डाउडना का अनुभव आरएनए पर काम करने का था। आम तौर पर वैज्ञानिक मानते थे कि वे आरएनए की भूमिका व कामकाज को भली-भांति समझते हैं। लेकिन तभी अचानक पता चला कि कोशिकाओं में छोटे-छोटे आरएनए अणु होते हैं जो जीन्स की गतिविधि का नियमन करते हैं। इस प्रक्रिया को आरएनए दखलंदाज़ी (आरएनए इंटरफरेंस) कहते हैं। आरएनए के क्षेत्र में अपने अनुभव के साथ डाउडना आरएनए दखलंदाज़ी के नए क्षेत्र में काम करने लगीं।
इसी समय शोधकर्ताओं ने एक मज़ेदार बात पता की थी - जब काफी अलग-अलग बैक्टीरिया तथा एक अन्य किस्म के सूक्ष्मजीव आर्किया की जेनेटिक सामग्री की तुलना की गई तो समझ में आया कि उनमें डीएनए के कुछ अनुक्रम बार-बार दोहराए जाते हैं और काफी संरक्षित रखे जाते हैं। एक ही कोड बार-बार आता है।
बारंबार प्रकट होने वाले इन अनुक्रमों की शृंखला को क्लस्टर्ड रेग्यूलरली इंटरस्पस्पर्ड शॉर्ट पैलिंड्रॉमिक रिपीट्स (संक्षेप में CRISPR - क्रिस्पर) कहते हैं। यानी ये ऐसे अनुक्रम हैं जो सामान्य जेनेटिक कोड में बीच-बीच में कई बार प्रकट होते हैं। और उससे भी ज़्यादा हैरत की बात तो यह थी कि क्रिस्पर में मौजूद ये अनुक्रम विभिन्न वायरसों के जेनेटिक कोड से मेल खाते हैं। फिलहाल ऐसा माना जाता है कि जब कोई बैक्टीरिया वायरस संक्रमण के बाद जीवित रह पाता है, तो वह वायरस के जीनोम का एक टुकड़ा अपने जीनोम में जोड़ लेता है - यह भविष्य में उस संक्रमण को याद रखने में मदद करता है। यानी यह बैक्टीरिया की इम्यून सिस्टम का हिस्सा है। यह काम कैसे करती है?
बैक्टीरिया में इम्यून सिस्टम की बात ने जीव विज्ञान में तहलका मचा दिया। यह बात डाउडना को उत्साहित करने को पर्याप्त थी। साथ ही शोधकर्ताओं ने यह भी पता किया था कि बैक्टीरिया में कुछ ऐसे जीन्स भी होते हैं जो क्रिस्पर से सम्बद्ध होते हैं जिन्हें नाम दिया गया क्रिस्पर-सम्बद्ध यानी क्रिस्पर-एसोसिएटेड (कास) जीन्स। डाउडना यह देखकर रोमांचित हुईं कि ये कास जीन्स उन जीन्स जैसे ही हैं जो डीएनए को खोलने व काटने में माहिर होते हैं। तो उन्होंने कई सारे कास जीन्स खोज निकाले। क्रिस्पर-कास सिस्टम इतनी रोमांचक थी कि कई शोधकर्ता इस पर काम कर रहे थे। धीरे-धीरे स्पष्ट हुआ कि बैक्टीरिया की इम्यून सिस्टम कई रूपों में होती है। डाउडना ने जिस सिस्टम पर काम किया था वह वर्ग 1 की सिस्टम थी और काफी जटिल थी। इसमें वायरस को पछाड़ने के लिए कई प्रोटीन्स का उपयोग होता है।
दूसरी ओर, वर्ग 2 की सिस्टम अपेक्षाकृत सरल थी और उसमें मात्र एक प्रोटीन की ज़रूरत होती है। शारपेंटिए इसी पर शोध कर रही थीं। उन्होंने स्ट्रेप्टोकॉकस प्योजेंस का अध्ययन करते हुए पता किया था कि इस बैक्टीरिया में एक छोटा आरएनए अणु काफी मात्रा में पाया जाता है और इस आरएनए का जेनेटिक कोड बैक्टीरिया के जीनोम में पाए गए क्रिस्पर अनुक्रम से बहुत मेल खाता है। इनकी समानता को देखते हुए शारपेंटिए को लगा कि हो न हो, इनमें कुछ सम्बंध है। आगे विश्लेषण से पता चला कि अज्ञात आरएनए का एक हिस्सा क्रिस्पर के उस हिस्से से मेल खाता है जो दोहराया जाता है। दिक्कत यह थी कि शारपेंटिए ने इससे पहले क्रिस्पर सिस्टम पर काम नहीं किया था लेकिन अब उनके समूह ने स्ट्रेप्टोकॉकस प्योजेंस पर गहन शोध आरंभ कर दिया। इस बैक्टीरिया की सिस्टम वर्ग 2 की होती है और इसमें वायरस डीएनए को काटने के लिए सिर्फ एक प्रोटीन (कास-9) की आवश्यकता होती है। इस अज्ञात आरएनए अणु को नाम दिया गया है ट्रांस-एक्टिवेटिंग क्रिस्पर आरएनए और इसकी भूमिका निर्णायक होती है। इसी मोड़ पर शारपेंटिए और डाउडना के बीच सहयोग शुरू हुआ। सहयोग का आधार स्पष्ट था - स्ट्रेप्टोकॉकस प्योजेंस की अपेक्षाकृत सरल सिस्टम में कास-9 प्रोटीन की भूमिका अध्ययन।
विचार यह बना कि संभवत: क्रिस्पर आरएनए तो वायरस के डीएनए को पहचानने का काम करता है और कास-9 वह कैंची है जो डीएनए को काटती है। लेकिन जब इसके आधार पर परखनलियों में प्रयोग किए गए तो ऐसा कुछ नहीं हुआ। तो क्या प्रयोग की परिस्थितियों में कुछ खामी है या क्या कास-9 की भूमिका कुछ और ही है?
तमाम प्रयोगों और दिमाग खपाने के बाद इन दो शोधकर्ताओं ने तय किया कि वे प्रयोग में ट्रांस-एक्टिवेटेड आरएनए में मिलाकर देखेंगे। जैसे ही यह मिलाया गया डीएनए दो टुकड़ों में बंट गया। इसके साथ ही शारपेंटिए और डाउडना ने बैक्टीरिया में एक महत्वपूर्ण प्रक्रिया की खोज कर ली थी।
अगला काम यह किया गया कि क्रिस्पर आरएनए और ट्रांस-एक्टिवेटेड आरएनए को जोड़कर एक ही अणु बना दिया। इसे उन्होंने गाइड-आरएनए नाम दिया। तो अब जेनेटिक कैंची का एक सरलीकृत रूप मिल चुका था।
इस कैंची की मदद से शोधकर्ता विभिन्न जीवों में जीनोम को मनचाहे स्थानों पर काट सकते हैं। यानी वे किसी भी जीव के डीएनए में से कोई जीन काटकर अलग कर सकते हैं। डाउडना और शारपेंटिए ने यह करके भी दिखा दिया। 2012 में इस जेनेटिक कैंची की खोज जीव वैज्ञानिकों के लिए एक महत्वपूर्ण औज़ार बन गई। सिर्फ बैक्टीरिया नहीं, मनुष्य जैसे विकसित जीव की कोशिकाओं में भी इसकी मदद से जेनेटिक परिवर्तन करना संभव हो गया।
आप देख ही सकते हैं कि यह जीव वैज्ञानिकों के हाथों में एक ऐसा औज़ार है जिसके दुरुपयोग की काफी संभावनाएं हैं। फसल सुधार, जेनेटिक उपचार जैसे क्षेत्रों में इसके उपयोग ज़ाहिर हैं। आनुवंशिक रोगों के संदर्भ में भी इसके उपयोग पर विचार किया जा रहा है। लेकिन इसकी मदद से कई ऐसे परिवर्तन भी किए जा सकते हैं, जिनके साथ नैतिक सवाल उठेंगे। चीन के एक शोध समूह ने क्रिस्पर-कास-9 का उपयोग करके जेनेटिक रूप से परिवर्तित बच्चे पैदा करने का दावा किया था। इस तकनीक ने जैव नैतिकता के नए सवाल प्रस्तुत किए हैं।(स्रोत फीचर्स)
-
Srote - December 2020
- संपूर्ण लॉकडाउन के विकल्प
- कोविड-19 मौतों में वायु प्रदूषण का योगदान
- कोरोनावायरस की जांच अब सिर्फ 5 मिनट में
- कोविड-19 का तंत्रिका तंत्र पर प्रभाव
- कोविड-19 और भू-चुंबकत्व: शोध पत्र हटाया गया
- न्यूयॉर्क युनिवर्सिटी ने हटाया सैकलर परिवार का नाम
- कुछ टीकों से एड्स जोखिम में वृद्धि की चेतावनी
- विज्ञान के नोबेल पुरस्कार
- ब्लैक होल से निकला भौतिकी का नोबेल
- रसायन शास्त्र का नोबेल जेनेटिक कैंची के लिए
- क्यूबा ने दिखाई पर्यावरण रक्षक खेती की राह
- अंतर्राष्ट्रीय स्पेस स्टेशन में तीन हज़ार प्रयोग
- जलवायु की उथल-पुथल का प्राचीन औज़ारों पर असर
- वैश्विक तापमान में वृद्धि और खाद्य सुरक्षा
- रूबेला वायरस को मिले दो साथी
- कान बजने का झटकेदार इलाज
- विद्युत-चुम्बकीय क्षेत्र से मधुमेह के उपचार की संभावना
- अल्ज़ाइमर की संभावना बताएगी कृत्रिम बुद्धि
- नमक से बढ़ जाती है मिठास!
- माइक्रोप्लास्टिक्स: इकॉलॉजी व जीवों पर नया संकट
- ओज़ोन परत बचेगी तभी जीवन बचेगा
- टार्डिग्रेड का सुरक्षा कवच है प्रतिदीप्ति
- चीन के दुर्लभ पक्षियों के बदलते इलाके
- कठफोड़वा में अखाड़ेबाज़ी
- मैडागास्कर के विशालकाय जीव कैसे खत्म हो गए
- बगैर बैटरी बिजली चालित वाहन
- मायोपिया से बचाव के उपाय
- प्लैनेट-9 की तलाश में एक नई तकनीक का उपयोग
- महिलाएं भी शिकार करती थीं!